Yue-Yao Chen
Academic Radiology
March 2014 Volume 21, Issue 3, Pages 338–344
Rationale and Objectives
Cervical disc degeneration can result in nerve root compression and severe symptoms that significantly impair the patient’s quality of life. The purpose of this study is to investigate multiple diffusion metrics changes in the diffusion tensor imaging (DTI) of cervical nerve roots and their relationship with the clinical severity of patients with cervical disc herniation.
Materials and Methods
High directional DTI of the cervical nerve roots was performed in 18 symptomatic patients and 10 healthy volunteers with a 3.0-T magnetic resonance system after a routine cervical disc scanning. The fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the DTI data and compared between the affected and unaffected sides in the same patient and between healthy volunteers and symptomatic patients. The correlation between the side-to-side diffusion metric differences and the clinical International Standards for Neurological Classification of Spinal Cord Injury scores was analyzed.
Results
C5–C8 nerve roots were clearly delineated with DTI. The FA, MD, AD, and RD of compressed nerve roots were 0.31 ± 0.091, 2.06 ± 0.536, 2.69 ± 0.657, and 1.75 ± 0.510 mm2/s, respectively. Compared to the unaffected side or healthy volunteers, the nerve roots of the affected side showed decreased FA (P < .022) and increased MD (P < .035), AD (P < .047), and RD (P < .012). The clinical International Standards for Neurological Classification of Spinal Cord Injury scores of the patients were negatively correlated with MD (r = −0.57,P = .002), AD (r = −0.451, P = .021), and RD (r = −0.564, P = .003) but not with FA (r = 0.004, P = .984).
Conclusions
DTI can potentially be used to assess microstructural abnormalities in the cervical nerve roots in patients with disc herniation.